
Mobile Application Builder Guide-iOS Guide
Oracle Banking Digital Experience

Patchset Release 22.2.2.0.0

Part No. F72987-01

December 2023

Mobile Application Builder Guide-iOS Guide

December 2023

Oracle Financial Services Software Limited

Oracle Park

Off Western Express Highway

Goregaon (East)

Mumbai, Maharashtra 400 063

India

Worldwide Inquiries:

Phone: +91 22 6718 3000

Fax:+91 22 6718 3001

www.oracle.com/financialservices/

Copyright © 2006, 2023, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective
owners.

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs
installed on the hardware, and/or documentation, delivered to U.S. Government end users are “commercial computer
software” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license
restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate failsafe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this
software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

This software or hardware and documentation may provide access to or information on content, products and services from
third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

http://www.oracle.com/financialservices/

Table of Contents

1. Preface .. 1–1

1.1 Intended Audience .. 1–1

1.2 Documentation Accessibility ... 1–1

1.3 Access to Oracle Support ... 1–1

1.4 Structure ... 1–1

1.5 Related Information Sources .. 1–1

2. OBDX Servicing Application ... 2–1

2.1 Prerequisite ... 2–1

2.2 Create Project ... 2–1

2.3 Create Project Using Remote UI .. 2–1

2.4 Create Project Using Local UI by running on local machine or local server. 2–1

2.5 Create Project Using local UI within the workspace. .. 2–4

2.6 Configurations for the IOS application: ... 2–4

2.7 Enabling SSL pinning in the application ... 2–14

2.8 Enabling Force update ... 2–16

2.9 Device Registration and Push Registration Functionality... 2–18

2.10 Generating Certificates for Development, Production and Push Notifications 2–19

2.11 SetUp for Push Notification in the application .. 2–22

2.12 Push Notification Actionable Alerts Configuration .. 2–26

2.13 Push Notification 2FA configuration ... 2–27

2.14 ODA Chatbot Inclusion ... 2–28

2.15 eKYC Implementation ... 2–31

2.16 Widget Functionality ... 2–34

2.17 Scan to Pay from Application Icon .. 2–36

2.18 Scan Card using Augmented Reality .. 2–36

2.19 Passkey (Passwordless login) .. 2–38

2.20 Deeplinking - To open reset password, claim money links with the application 2–41

3. Archive and Export .. 3–1

4. OBDX Authenticator Application (Futura Secure) .. 4–1

4.1 Authenticator UI (Follow any one step below) .. 4–1

4.2 Authenticator Application Workspace Setup .. 4–2

4.3 Archiving Authenticator Application .. 4–4

4.4 Using SSL in Authenticator App: .. 4–7

Preface

1–1

1. Preface

1.1 Intended Audience

This document is intended for the following audience:

• Customers

• Partners

1.2 Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program

website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

1.3 Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information,
visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

1.4 Structure

This manual is organized into the following categories:

Preface gives information on the intended audience. It also describes the overall structure of the
User Manual.

The subsequent chapters describes following details:

• Introduction

• Preferences & Database

• Configuration / Installation.

1.5 Related Information Sources

For more information on Oracle Banking Digital Experience Patchset Release 22.2.2.0.0, refer to
the following documents:

• Oracle Banking Digital Experience Installation Manuals

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

OBDX Servicing Application

2–1

2. OBDX Servicing Application

This is the main application for mobile banking.

2.1 Prerequisite

• Download and Install node js as it is required to run npm and cordova commands.

• Latest XCode to be download from Mac App Store. This document is w.r.t to XCode 15.0

• OBDX iOS Application is supported only on current iOS version and only one version
preceding that.

2.2 Create Project

Ensure Nodejs Version is >= 12 and latest XCode version available on AppStore is used.

1. Extract iOS workspace from installer and place in a folder.

2. The workspace contains framework for running on devices and simulator both. The same
frameworks within the workspace can we used to run on simulator and device as well. There
is no need to copy the frameworks from simulator folder to workspace for this version.

3. Below are the frameworks present inside the workspace. Verify if these are present before
running the application on device or simulator.

a. OBDXFramework.xcframework

b. CordovaFramework.xcframework

c. OBDXExtensions.xcframework

d. OBDXWatchFramework.xcframework

4. To run the application, we also need UI for the application. UI can be hosted on the remote
server or hosted on local machine or saved locally in the mobile workspace. The UI pointing to
remote server, will be served pointing to the remote server URL. UI hosted on local machine
will be served using localhost URL. Refer below sections to include the UI.

5. Also, apple certificates and provisioning profiles are needed to run the application on devices.
Refer Section 2.10 for more details.

6. Also, refer section 2.6 for configurations required for the application.

2.3 Create Project Using Remote UI

• Update the server URL in app.plist against KEY_SERVER_URL key. This is the URL where
the UI is also hosted.

Proceed to 2.6 Configurations for the application.

2.4 Create Project Using Local UI by running on local machine or
local server.

Use any 1 option below of a/b:

OBDX Servicing Application

2–2

a. Building un-built UI (required in case of customizations)

1. For this version, since the UI is built with webpack, the built UI cannot be
modified from with the mobile workspace as it is minified code. Hence, either
bank can host the UI is two ways:

• Use local machine as local server and host the UI on local development
machine and connect the application using localhost.

• OR host the UI on local development server and point the application to
that server URL.

2. UI is same for internet and mobile, same build process of internet to be followed.

Bank can follow the UI build steps from “Oracle Banking Digital Experience User
Interface Guide”.

3. For building UI for mobile, Open scripts->webpack->webpack.dev.js and add
below line in devServer object:

as below:

headers: {
 "Access-Control-Allow-Origin": "*"

 },

 SAMPLE:

 devServer: {
 static: path.join(__dirname,
 "../../dist"),
 compress: true,
 port: 4000,
 hot: false,
 client: false,
 headers: {
 "Access-Control-Allow-Origin": "*"
 },

4. Also, in webpack.dev.js comment out below lines inside “entry” key

entry: {
 // main: "framework/js/configurations/require-config.js",
 // Runtime code for hot module replacement
 //hot: 'webpack/hot/dev-server.js',
 // Dev server client for web socket transport, hot and live reload logic
//client: 'webpack-dev-server/client/index.js?hot=true&live-//reload=true',
 },

5. Once the UI is built, run below command to start a local server on the
development machine using below command:

• npm run start

OBDX Servicing Application

2–3

• Once this server starts, below is the window which appears. This indicates
local server is started.

• Point the “key_server_url” to http://localhost:4000 and run the application on
simulator. To run on device, the internet proxy should allow localhost domain
to accept incoming requests.

If it is blocked, UI should be built and “npm start” command should be
executed on a development server machine which is accessible in the
network. They “key_server_url” will then point to that local server URL
instead of localhost.

b. Using built UI (out of box shipped with installer)

Available at --

OBDX_Installer/installables/ui/deploy (Main release, OBDX installer),

OBDX_Patch_Installer/installables/ui/deploy (Patchsets)

• There will be production enabled dist generated in the built UI.

• Bank can either directly deploy this dist to their server and point the application to
that server as mentioned in point a) above OR

• Bank can copy the dist folder in their workspace and follow steps from point 3 in
section 2.5.

• If bank wants to do any changes in the code, point a) steps needs to be followed.

NOTE: If banks want to debug UI in production builds, then dist should be created with
below configuration enabled in webpack.prod.js

devtool: 'eval',

• This will however increase the files deployed on server and reduce the proformance
on production. Refer Webpack documentation
https://webpack.js.org/configuration/devtool/ for more details.

http://localhost:4000/
https://webpack.js.org/configuration/devtool/

OBDX Servicing Application

2–4

2.5 Create Project Using local UI within the workspace.

1. Extract the unbuilt UI and follow steps up to 5 in the above section 2.4.

2. After step 4, run below command to generate dist folder.

npm run webpack-dev – this will generate development enabled dist

npm run webpack-build- this will generate production enabled dist

3. Once the dist folder is created, copy all files inside dist folder and save it in the Zigbank
project->Staging ->www folder.

4. Open Index.html and home.html and add below line inside head section below meta tag.

<script src="cordova.js" type=”text/javascript”></script>

5. Set the server URL in app.plist against key_server_url. This is the URL where backend
services are hosted.

6. With this setup, since the files generated in dist folder are minified format we cannot change
the code. If any change needs to be done in any UI file, then the changes must be done in
the UI folder, built it again to generate dist and copy the files to workspace again. Since this is
tedious process, we recommend to setup local server and host UI there for development.

2.6 Configurations for the IOS application:

1. For Running the application on latest M1 Chip Macs with XCode 15.0, please update below
path.

• Open terminal application on Mac and type below command

which node

• It should print the path where node is installed as shown in the SS below.

OBDX Servicing Application

2–5

• Go to Zigbank Target->Build Phases->Copy www directory and update the
NODEJS_PATH=/usr/local/bin; to

NODEJS_PATH=/opt/homebrew/bin;

NOTE: This is only for M1 Chip macs. For Intel macs, no change is required.

For other configurations refer ‘app.plist’ (ZigBank/Resources) of the workspace.

Note: These are configurations for different features. The description of each in given below
format

Type - Data Type of value

Purpose - Its usage

Value – The possible values

Configurable – Yes if bank can be allowed to change. No if the value is not allowed to be
changed.

OBDX Servicing Application

2–6

For SERVER_URLs:

Open XCode by clicking ZigBank.xcodeproj at zigbank/platforms/ios/

1. Adding URLs to app.plist (ZigBank/Resources)

a. NONOAM (DB Authenticator setup)

SERVER_TYPE NONOAM

KEY_SERVER_URL https://mumaa012.in.oracle.com:18443/

WEB_URL https://mumaa012.in.oracle.com:18443/

b. OBDXTOKEN (Token based mechanism)

SERVER_TYPE OBDXTOKEN

KEY_SERVER_URL https://mumaa012.in.oracle.com:18443

WEB_URL https://mumaa012.in.oracle.com:18443

c. OAUTH Setup (Refer to installer pre-requisite documents for OAuth configurations)

SERVER_TYPE OAUTH

KEY_SERVER_URL Eg. https://mumaa012.in.oracle.com:18443/

(This URL must be of OHS without webgate)

WEB_URL Eg. https://mumaa012.in.oracle.com:18443/

KEY_OAUTH_PROVIDER_URL http://mum00aon.in.oracle.com:14100/oauth2/rest/token

APP_CLIENT_ID <Base64 of clientid:secret> of Mobile App client

APP_DOMAIN OBDXMobileAppDomain

WATCH_CLIENT_ID <Base64 of clientid:secret> of wearables

WATCH_DOMAIN OBDXWearDomain

SNAPSHOT_CLIENT_ID <Base64 of clientid:secret> of snapshot

SNAPSHOT_DOMAIN OBDXSnapshotDomain

LOGIN_SCOPE OBDXMobileAppResServer.OBDXLoginScope

OBDX Servicing Application

2–7

d. IDCS Setup

SERVER_TYPE IDCS

KEY_SERVER_URL Eg. https://mumaa012.in.oracle.com:18443/

(This URL must be of OHS without webgate)

WEB_URL Eg. https://mumaa012.in.oracle.com:18443/

KEY_OAUTH_PROVIDER_URL http://obdx-
tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/toke
n

APP_CLIENT_ID <Base64 of clientid:secret> of Mobile App client

WATCH_CLIENT_ID <Base64 of clientid:secret> of wearables

SNAPSHOT_CLIENT_ID <Base64 of clientid:secret> of snapshot

LOGIN_SCOPE obdxLoginScope

OFFLINE_SCOPE urn:opc:idm:__myscopes__ offline_access

2. For SIRI:

1. This configuration is Optional.

2. By default, SIRI capability is set to YES. Bank can disable it.

CurrencyCode Type: String

Purpose: Currency code for Siri Payments

Value: Currency Value. Ex: INR

Configurable: Yes

SiriRequiredFlag Type: Boolean

Purpose: To enable/disable Siri capability

Value: YES/NO

Configurable: Yes

SIRIDebugEnabled Type: Boolean

Optional. Can be set if debugging is required in
development mode. Default the value is NO

Purpose: If we need to debug SIRI flow, this can be
set to true. Refer section on how to configure device
to debug SIRI.

Value: YES/NO

http://obdx-tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/token
http://obdx-tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/token
http://obdx-tenant01.identity.c9dev0.oc9qadev.com/oauth2/v1/token

OBDX Servicing Application

2–8

Configurable: Yes

3. Siri-Payload.plist

a. This is present in ZigBank/Resources folder inside IOS workspace.

b. It is provided to specify entries in the Siri payload based on transaction types
(internal, domestic or international). Entries common to all the transaction
types can also be entered.

c. This is required if bank’s SIRI payment payload differs from what is currently
present in workspace and if bank needs to add certain mandatory fields for
the payload.

d. By default, SIRI will work with the given payload so no need to change
anything in it.

3. To Enable SSL:

1. Refer section 2.7 on how to configure the workspace to enable SSL pinning in the
application.

2. By default, SSL pinning is NO in the workspace for UAT and development.
Recommended to set to YES for production URLs with a valid authorized certificate on
server.

SSLPinningEnabled Type: Boolean

Purpose: To enable SSL Pinning.

Value: YES for enabling. NO for disabling.

Configurable: Yes

CertificateType Type: String

Purpose: File extension of SSL Pinned certificates

Value: This is to set as .cer and the certificate file
added in the workspace should also have .cer
extension

Configurable: Yes

PinnedUrl Type: Array

Purpose: Pinning URL to be entered here. This is the
https URL of the server against which the certificate
will be verified.

Value: https server URL

Configurable: Yes

PinnedCertificateName Type: Array

Purpose: For verification of SSL, this certificate will be
pinned in the application and verified against the
server URL.

OBDX Servicing Application

2–9

Value: Houses the certificate name (without
extension) of the pinning certificate. Old certificate
(about to expire) and new one can co-exist.

Configurable: Yes

SSLPinningEnabledNoNetworkCall Provides the option of whether to load the login page
if SSL Pinning fails. SSLPinningEnabled also must be
set to YES for it to work.

If set to YES and SSLPinningEnabled is set to YES
then if SSL Pinning fails, then login page does not
load.

If set to NO and SSLPinningEnabled is set to YES
then if SSL Pinning fails, then login page loads.

Configurable: Yes

4. To Enable Force Update:

This is optional configuration. Refer section 2.8 on more details on how to configure the
workspace for this.

ForceUpdate Type: Boolean

Purpose: To enable updating of app forcibly

Value: If set to YES, then the application will check for
updates from the Appstore and display a non-dismissing
popup. User needs to forcefully update the application.
Default value: NO

Configurable: Yes

AppStoreID Type: String

Purpose: The force update will be checked against this
application ID

Value: Enter the ID of the application from AppStore.

Configurable: Yes

AppStoreURL Type: String

Purpose: URL to identify app in AppStore for force
update

Value: It is set to

https://itunes.apple.com/in/app/id@@AppStoreID?mt=8

Just replace @@AppStoreID to what is set above for
‘AppStoreID’

Configurable: Just update as mentioned above. There is
no need to change this URL.

https://itunes.apple.com/in/app/id@@AppStoreID?mt=8

OBDX Servicing Application

2–10

5. WATCH Application parameters:

Applicable only if Watch target is added in the workspace.

WatchOATCorp Type: Boolean

Purpose:To enable/disable Own Account Transfer
through Apple Watch OBDX application for corporate
users only. If set to YES, then OWN Account Transfer
option will be available in the watch application.

Value: YES to display the option. NO to hide that
option

Configurable: Yes

WatchSnapshot Type: Boolean

Purpose: To enable/disable snapshot capability in
Apple Watch OBDX application. If set to YES, then
Snapshot option will be available in the watch
application.

Value: YES to display the option. NO to hide that
option.

Configurable: Yes

WatchLocateUs Type: Boolean

Purpose: To enable/disable ATM Location option in
Apple Watch OBDX application. If set to YES, then
ATM Location option will be available in the watch
application.

Value: YES to display the option. NO to hide that
option

Configurable: Yes

WATCHMAXATTEMPTS Type: Number

Purpose: The number of time PIN login is allowed in
the watch application

Value: Set the value to which Bank wants to restrict
the PIN invalid attempts. After these attempts, user
will need to register the application PIN again.

Configurable: Yes

6. For DISPLAYING MAINTENANCE PAGE (Optional):

1. This is optional configuration. Bank needs to do this if they want to display maintenance
page in case of any server error.

2. By default, a maintenance page html is provided in workspace inside Zigbank->Staging-
>www. If bank needs to reconfigure the content, they can edit this page html.

OBDX Servicing Application

2–11

3. Also, by default, SHOW_MAINTENANCE_PAGE flag is set to YES and error code is set
to 503.

SHOW_MAINTENANCE_PAGE Type: Boolean

Purpose: To display a maintenance page if
server is down.

Value: true to display. If bank doesn’t need any
page to be displayed, it can be set to false.
Default is true

Configurable: Yes

MAINTENANCE_PAGE_STATUS_CODE Type: Array

Purpose: To set the status code for which
maintenance page is to be displayed. This will
be used only if
“SHOW_MAINTENANCE_PAGE” value is
true.

Value: status code to be checked (E.g. 503,
504 etc) Default value is 503. Bank can set only
one value or multiple status codes if required.

Configurable: Yes

4. NOTE: If UI is built and copied into workspace as local UI (by using section 2.5), and bank
wants to use maintenance page, then additional changes are required as below:

5. No need to do these changes if the UI remotely hosted.

1. In app.plist, add and additional property “MAINTENANCE_PAGE_URL” as String
and set the maintenance page URL which needs to be displayed when server is
down.

2. Open index.html and add below code in script tag as below:

<script type="text/javascript" charset="utf-8">

 function init() {
 var
maintenancePageUrl,maintenancePageStatusCode,showMaintenancePage;
 var server_url = "http://ofss-mum-
715.snbomprshared1.gbucdsint02bom.oraclevcn.com:17777"
 var home_html = "?ojr=home";
 var url = server_url + "/" + home_html;

plugins.appPreferences.fetch(MAINTENANCE_PAGE_STATUS_CODE_SUCCE
SS, error, 'MAINTENANCE_PAGE_STATUS_CODE');

plugins.appPreferences.fetch(SHOW_MAINTENANCE_PAGE_SUCCESS, error,
'SHOW_MAINTENANCE_PAGE');

 function MAINTENANCE_PAGE_URL_SUCCESS(value) {
 maintenancePageUrl = value;

OBDX Servicing Application

2–12

 showMaintenance();
 }

 function MAINTENANCE_PAGE_STATUS_CODE_SUCCESS(value) {
 maintenancePageStatusCode = value;
 }

 function SHOW_MAINTENANCE_PAGE_SUCCESS(value) {
 var xmlhttp = new XMLHttpRequest();
 xmlhttp.onreadystatechange = function() {
 if (xmlhttp.readyState === 4) {
 if (maintenancePageStatusCode.includes(xmlhttp.status) &&
value) {

plugins.appPreferences.fetch(MAINTENANCE_PAGE_URL_SUCCESS, error,
'MAINTENANCE_PAGE_URL');

 }
 }
 }
 xmlhttp.open("GET", url, true);
 xmlhttp.send();
 }

 function error(err) {
 console.log(err);
 }

 showMaintenance = function () {
 var xmlhttpMaintenance = new XMLHttpRequest();

 xmlhttpMaintenance.onreadystatechange = function () {

 if (xmlhttpMaintenance.readyState === 4) {
 document.getElementById("obdx-dashboard").style.display
="none";

document.getElementById("showMaintenancePageid").innerHTML =
this.responseText;
 }
 };
 xmlhttpMaintenance.open("GET", maintenancePageUrl, true);
 xmlhttpMaintenance.setRequestHeader("Cache-Control", "no-cache,
no-store, max-age=0");
 xmlhttpMaintenance.send();
 }

 }

6. </script>

7.

3. In the body tag add onload="init();" attribute.

4. Update the server_url in the above script to bank’s server url

OBDX Servicing Application

2–13

7. COMMON CONFIGURATIONS:

XcodeBuildVersion Build version with which the workspace is built with.

Configurable: No

SUITENAME Group identifier for sharing keystore information.
Same as given in app groups (mandatory to be given
same as App Group name). App Groups are linked
with the provisioning profile and its value can be
verified from the Zigbank target->Signing Capabilties.

This value is important for the secured storage of the
information.

Configurable: Yes

BankName Name of bank to be shown on touch id / face id popup

Configurable: Yes

DomainDeployment To be set YES for token-based development.

Configurable: NO

8. FOR CHATBOT:

1. This is optional configuration. Bank needs to do this if chat bot is added in their
workspace.

2. Adding chatbot support to mobile application (Optional) (refer section ODA Chatbot
Inclusion for more details)

CHATBOT_ID The tenant ID

CHATBOT_URL The web socket URL for the ChatApp application in ODA

9. For eKYC

1. This is optional. Bank needs to do this if ekyc is enabled.

2. Adding eKYC verification support to mobile application (Optional) (see section eKYC
Implementation more details)

LX_CLIENT_ID The client ID

LX_ADDRESS This is the live exp server address. By default
it is

Adding Bundle Identifiers. (Refer Section 2.10 for generating the appIDs and certificates)

We need to set bundle identifier for each framework within the workspace.

• Bundle identifiers needs to be added in the Info.plist of each the frameworks

1. For example, the bundle identifier used is abc.def.ghi.jkl. The steps to be followed
are,

OBDX Servicing Application

2–14

2. Right click on OBDXFramework.framework(in Xcode’s Project Navigator) -> Show
in Finder

3. When the finder directory opens the right click OBDXFramework.xcframework ->
select ios-arm64 -> Select OBDXFramework.framework

4. Open Info.plist and set Bundle identifier as abc.def.ghi.jkl.OBDXFramework

5. Repeat the steps for the other three frameworks as well, with the following values:

6. Bundle identifier for Cordova.framework : abc.def.ghi.jkl.Cordova

7. Bundle identifier for OBDXExtensions.framework : abc.def.ghi.jkl.OBDXExtensions

8. Bundle identifier for OBDXWatchFramework.framework : abc.def.ghi.jkl.
OBDXWatchFramework

• Set the identifier in the Signing Capabilities tab in Xcode for each target.

1. Open Xcode project in Xcode and select each target and go to Signing and
Capabilities and update correct bundle identifier for each target.

2. Example if main target bundle identifier is “com.ofss.digx.obdx.zigbank” then each
target should have below format for bundler indentifiers

OBDXSiriExtensionSiri – com.ofss.digx.obdx.zigbank.OBDXSiriExtension

OBDXSiriExtensionUI – com.ofss.digx.obdx.zigbank.OBDXSiriExtensionUI

ObdxImessageExtension– com.ofss.digx.obdx.zigbank.ObdxImessageExtension

OBDXWatchApp – com.ofss.digx.obdx.zigbank.watchkitapp

OBDXWatchAppExtension-
com.ofss.digx.obdx.zigbank.watchkitapp.watchkitextension

AccountsWidgetExtension – com.ofss.digx.obdx.zigbank.AccountsWidget

NotificationExtension- om.ofss.digx.obdx.zigbank.OBDXNotificationExtension

2.7 Enabling SSL pinning in the application

SSL pinning in required to securely connect with a valid bank server. It is recommended to enable
this in production. By default, SSL pinning is set to NO in the application for development purpose
so that the application can connect to http URLs and no SSL certificates are required to be
configured on the server.

To enable SSL pinning, bank needs to follow the configurations mentioned in the section
“Configurations”.

Along with those, there are below steps to be followed to include the certificate into workspace:

• Open bank’s https website in Safari on Mac machine

• The website will display a lock icon in the address bar next to the URL.

• Click on that lock icon. It will display a window as below:

OBDX Servicing Application

2–15

• Click on Show certificate and below window will be displayed

• Press and drag the certificate icon from Safari to any location on your machine.

• Rename it to any name.cer

• Open Zigbank project in Xcode

• Right Click on Resources folder and select “Add Files to Zigbank”

• Select the certificate file which is saved in above step.

• Make sure “Copy items if needed” and target is set to Zigbank as below:

• The certificate will be added in the Resources folder.

• Copy the name and add it in the app.plist against @@PINNING_CERTIFICATE_OLD_1
for PinnedCertificateName as shown below. Refer configuration section for this key
information.

Note: Since this is an array, bank can add multiple certificates for
@@PINNING_CERTIFICATE_OLD_1, @@PINNING_CERTIFICATE_OLD_2.

OBDX Servicing Application

2–16

Also, since SSL certificate are renewed after the expiry
@@PINNING_CERTIFICATE_NEW_1 and @@PINNING_CERTIFICATE_NEW_2
options are provided.

These are the corresponding new certificate names which can be added by the bank when
the old certificates are about to expire and release this version of application to Appstore
so that the application continues to work with SSL pinning even after old certificate has
expired. Same activity bank can continue to do for every year before old certificate
expires.

• To add the new certificates in workspace, bank has to follow same steps as mentioned
above

• The old unused certificates can be deleted after they are expired.

• After the certificates are configured, next step is to set ‘PinnedUrl’ key in the app.plist. Refer
configuration section for this key information. Add the https URL against which the
certificates are to be verified. If there are multiple site certificates added, then bank has to
set all those urls in each item as below:

2.8 Enabling Force update

• This is optional configuration.

• When a new version of the application is available on AppStore, user should be notified to
upgrade their application. This flag will check the update and display a non-cancellable
popup message to the user to update their application.

• For this to happen, enable this flag and other values as mentioned in the configuration
section.

• Bank needs to set the version of the application which will be newer to what is present on
Appstore.

• Set it in “Bundle version string (short)” in ZigbankInfo.plist and in marketing version in
Watch target->Build Settings. (Watch target setting is only required if Watch target is
present for bank in its workspace.

• So if Appstore has version 1.0.1, the new application code can have version greater that
1.0.1 which can be either 2.0 or 1.0.2 or 1.1.0 or 1.1.1 etc. Once this new version is
released to Appstore, the application already installed on user’s device will compare the
installed version with what is available on Appstore.

• If the version available on AppStore is greater, then below popup will be displayed.

OBDX Servicing Application

2–17

On clicking the button, user will be redirected to the Appstore page of that application. (Ensure to
set correct AppStoreID in the configuration for this redirection)

• The popup header text and message can be configured in “Localizable.strings” file inside
Classes folder in the workspace for below keys:

Header – APP_UPDATE_HEADER
Message - APP_UPDATE_TEXT
Button text- APP_UPDATE_BTN_TEXT

• If bank enables this feature in any versions after the first application is launched, then this
logic will work from the time the users install the version which has this logic enabled. Ex:
If bank has 1.0 in Appstore for which this flag as false and bank releases 1.1 in Appstore
with this flag enabled, then user needs to install the 1.1. application manually. Since 1.0
didn’t have that flag enabled, it will not check for any updates.

However, every future release made to Appstore will check for any updates and display
the force update popup.

OBDX Servicing Application

2–18

2.9 Device Registration and Push Registration Functionality

In this version, only one device is allowed to be registered for alternate login for the same
username. If user tries to register another device with same username for alternate login, then the
previous registration on other devices will be removed. User will get an error message if he/she
tries to use PIN/PATTERN/FACE on the de-registered devices.

While user registers his second device or same device again (by re-installing the application), a
popup will appear to notify the same.

If user confirms, then the current device will be registered, and all previous registrations will be
removed.

If user cancel, the process is exited.

Also, in this version, only one device is allowed to be registered for push.

Bank can allow multiple devices to be registered for same username in their setup by setting below
two configurations:

ALLOWED_DEVICE_COUNT to any value between than 1 and 100.

• 1 will allow on one device registration.

• 100 will allow more than one device registration.

OBDX Servicing Application

2–19

ALLOWED_PUSH_DEVICE_COUNT any value between 1 and -1

• 1 will only one device to be registered for push.

• -1 will only multiple devices to be registered for push.

2.10 Generating Certificates for Development, Production and Push
Notifications

This is required for running the application on device for debugging, testing as well for releasing
the application to Appstore.

Bank can refer to Apple’s documentation on how to create certificates and provisioning profiles.

Create all certificates (by uploading CSR from keychain utility), provisioning profiles and push
certificates as shown below by login in developer console. For development add device UUIDs and
add same to provisioning profiles. Add capabilities as shown below and ensure the bundle identifier
matches the one of the application in XCode.

There are parts to it:

1. Certificate Creation

2. AppID creation

3. Profile creation

4. Enabling Push services and push certificate creation

5. Adding devices for testing on actual devices

Certificate Creation: Below is the screen on apple developer portal where bank needs to create
distribution and Development certificates.

OBDX Servicing Application

2–20

AppID creation: Below is the screen where bank needs to create appIDs for each target

Ensure AppGroups capability is added to all profiles and for appIDs.

Ensure SiriKit, App Groups, Push Notifications, Associated domain capabilities are added in
Zigbank appIDs.

Below are the appIDs which we need for OBDX application in similar format as below:

OBDX Servicing Application

2–21

Profile Creation: Bank needs to create development, distribution and Appstore profiles for each
target.

Select appropriate AppIDs to relevant profile and appropriate certificates. E.g. AccountWidget
target will have development certificate with appId created for AccountWidget if development type
profile is created. Likewise for other targets.

OBDX Servicing Application

2–22

2.11 Setup for Push Notification in the application

There are two ways: p12 and .p8

For p12 bank needs to create APNS certificate, it’s password and store that certificate on server
and update database configurations. For p8, bank needs to setup Key and update database with
the details. All details are mentioned below:

1. Certificate needs to be created for push notification as below:

Note the certificate/bundle name

Download this certificate and store on server E.g. resources/mobile/ios-cert.p12. We need this
path to be set in database.

1. Note the Team ID from top right corner below the account name.

2. Note the bundle identifier for Zigbank (Refer section 2.10 AppIDs)

3. Navigate to the “Keys” section and create APNS key.

4. Note APNS key and download the .p8 file. We need the contents of this file to update in
database

OBDX Servicing Application

2–23

5. Below are the configurations to be done at database level:

Common configuration

Sr.
No.

Table PROP_ID CATEGORY_ID PROP_VALUE Purpose

1 DIGX_FW_CO
NFIG_ALL_B

APNSKeySto
re

DispatchDetails DATABASE or
CONNECTOR

Specifies
whether to
pick
certificate
password(va
lue of APNS
prop) from
database or
from
connector.
Default DB
(No change)

2 DIGX_FW_CO
NFIG_ALL_B

APNSCertKe
yStore

DispatchDetails DATABASE

OBDX Servicing Application

2–24

3 DIGX_FW_CO
NFIG_ALL_B

proxy DispatchDetails <protocol,proxy_addr
ess>

Provides
proxy
address, if
any, to be
provided
while
connecting
to APNS
server.
Delete row if
proxy not
required.
Example:
HTTP,148.5
0.60.8,80

4 DIGX_FW_CO
NFIG_ALL_B

CERT_TYPE DispatchDetails For dev push certs
add row with value
‘dev’

Possible values for
Dev:

1. dev

2. dev-cert

For Production:

3. prod

4. prod-cert

For prod
push
certificates
this row is
not required
as it takes
prod by
default

5 DIGX_FW_CO
NFIG_VAR_B

APNS_BUND
LE

 Eg.
com.ofss.digx.obdx.z
igbank

Bundle
Name

(Update for
all entities)

7 DIGX_FW_CO
NFIG_VAR_B

APNS_TEAM
ID

 Eg. 3NX1974C93 Team ID of
Apple
developer
account

(Update for
all entities)

OBDX Servicing Application

2–25

If bank uses, P12 below are the configurations to be set:

Sr.
No.

Table PROP_ID CATEGORY_ID PROP_VA
LUE

Purpose

1 DIGX_FW_CO
NFIG_ALL_B

CERT_TYPE DispatchDetails dev-cert

prod-cert

To specify to take the
certificate file from the
path mentioned in
"ios_cert_path”
prop_id

2 DIGX_FW_CO
NFIG_ALL_B

ios_cert_path DispatchDetails resources/
mobile/ios-
cert.p12

This is the path of the
p12 certificate stored
on server

3 DIGX_FW_CO
NFIG_VAR_B

APNS DispatchDetails Certificate
password

Provide APNS
certificate password
created in section 2.11

If bank has configured .p8 for push notification:

Sr.
No.

Table PROP_ID CATEGORY_ID PROP_VA
LUE

Purpose

1 DIGX_FW_CO
NFIG_VAR_B

APNS DispatchDetails <Key ID> Provides key of .p8
certificate

2 DIGX_FW_CO
NFIG_ALL_B

CERT_TYPE DispatchDetails For dev
push certs
add row
with value
‘dev’

For prod push
certificates this row is
not required

3 DIGX_FW_CO
NFIG_VAR_B

APNSCert

Eg –

-----BEGIN
PRIVATE
KEY-----

abcd

-----END
PRIVATE
KEY-----

Open the .p8 file and
copy contents to
column

(Update for all entities)

6. If CONNECTOR is selected in “ APNSKeyStore”” update key as below

OBDX Servicing Application

2–26

2.12 Push Notification Actionable Alerts Configuration

To enable deep linking with actionable alerts make the following changes on the server end to the
push notifications payload:

1. Send the “category" as “pac”.

2. Send the required deep-linking URL in “SUMMARY_TEXT”.

OBDX Servicing Application

2–27

2.13 Push Notification 2FA configuration

1. This is 2fa authentication set for any transaction. With the setup, whenever any user initiates
any transaction, they will receive a push notification on the registered device. They have to
click on the notification to accept/reject the transaction. Based on the action, the transaction
will be proceeded.

2. Note: PUSH notifications are received only if user has allowed push notification when the
application was installed and logged in the mobile application for the first time.

3. If user disallows the notification when the application for installed for the first time., they will
not receive any push notifications on their devices.

4. If Push notification 2fa is enabled at bank side for any transaction then, the screen displays
message to wait for the push notification to accept/reject the transaction authentication. The
message displayed on the text as well contains a timer of 5 minutes displayed on the UI. This
value is set in the UI code. If bank needs to change this value, bank needs to update the
value in UI code:

File path: channel/metadata/user-components/push-out-of-band/push-out-of-band/hook.js

Code to be changed: const mins = <<value>>;

Update the value to what bank needs to set it. This value is in minutes.

So, ideally 5 minutes (existing value in base UI code) is an ideal time. Any changes made in
this value should satisfy below pre-condition

5. There is an OTP expiration time set in “digx_fw_config_ALL_b” table.

6. Also, there is business policy check set to 10 minutes for validation of the generated 2fa
token. Bank can write their own business policy where they can modify the 10 minutes time.

So, the time in UI code should not exceed 10 minutes and OTP expiration time in
“digx_fw_config_ALL_b” table.

OBDX Servicing Application

2–28

2.14 ODA Chatbot Inclusion

To enable ODA Chatbot services in the mobile app, the following changes needs to be made:

1. Copy the folder "cordova-plugin-chatbot" from the SVN path
: workspace_installer/AppExtensions/ODAChatbot The frameworks can be found at ODA
Client SDK for iOS x.y.z - Latest in https://www.oracle.com/downloads/cloud/amce-
downloads.html#license-lightbox. After downloading and unzipping the latest version the
frameworks for an actual device and simulator can be found inside the folders named
"FrameworksActualDevice" and "FrameworksSimulator" respectively. Frameworks to be
chosen as per the target and pasted inside "cordova-plugin-chatbot".

2. Paste the folder "cordova-plugin-chatbot", copied previously in the path
: workspace_installer/Zigbank/plugins A screenshot of the destination in Finder is attached
herewith.

3. Open the Zigbank.xcodeproj file, right click on "Plugins" folder and select "New Group"
option. Name the group as "cordova-plugin-chatbot".

https://obdxsvn.oraclecorp.com/svn/clip/branches/r20.1.0.0.0_support/poc/mobile/ios/service/AppExtensions/ODAChatbot
https://www.oracle.com/downloads/cloud/amce-downloads.html#license-lightbox
https://www.oracle.com/downloads/cloud/amce-downloads.html#license-lightbox
workspace_installer/Zigbank/plugins

OBDX Servicing Application

2–29

4. Right click on the newly created group and select "Add files to "Zigbank"" option, and

add all the contents of "cordova-plugin-chatbot" folder, pasted previously.

5. After addition of the files, go to "General" tab for "Zigbank" target and under the

"Frameworks, Libraries and Embedded Content" section change the embed type of the

frameworks "Starscream.framework" and "BotClientUISDK.framework" to "Embed and

Sign". Failing to do so will make the app crash after installation.

OBDX Servicing Application

2–30

OBDX Servicing Application

2–31

2.15 eKYC Implementation

To enable eKYC please follow the steps mentioned below:

1. Download the iOS ID Verification SDK from oracle.live.api-ios-id-verification.zip from Oracle
Live Experience. All the frameworks inside “release” folder of “oracle.live.api-ios-id-
verification” are needed viz.

• OracleLive.framework

• WebRTC.framework

• wscSDK.framework

2. Go to https://mobile-sdk.jumio.com/com/jumio/ios/jumio-mobile-sdk/ and navigate to the latest
version to download the Jumio frameworks. Unzip the downloaded folder the following
frameworks are of use to us:

• BAMCheckout.framework

• DocumentVerification.framework

• iProov.framework

• JumioCore.framework

• JumioProov.framework

• JumioNFC.framework

• Microblink.framework

• Netverify.framework

• NetverifyBarcode.framework

• NetverifyFace.framework

• SocketIO.framework

• Starscream.framework

• ZoomAuthentication.framework

3. Paste the frameworks downloaded in the previous steps in the folder "cordova-plugin-ekyc"
from the SVN path : workspace_installer/AppExtensions/eKYC

4. Paste the folder "cordova-plugin-ekyc", copied previously, in the path

: workspace_installer/Zigbank/plugins A screenshot of the destination in Finder is

attached herewith.

http://sdp-infra1.us.oracle.com/repository/sdk/latest/ios/oracle.live.api-ios-id-verification.zip
https://mobile-sdk.jumio.com/com/jumio/ios/jumio-mobile-sdk/
https://obdxsvn.oraclecorp.com/svn/clip/branches/r20.1.0.0.0_support/poc/mobile/ios/service/workspace_installer/AppExtensions/eKYC
workspace_installer/Zigbank/plugins

OBDX Servicing Application

2–32

5. Open the Zigbank.xcodeproj file, right click on "Plugins" folder and select "New Group"

option. Name the group as "cordova-plugin-ekyc".

6. Right click on the newly created group and select "Add files to "Zigbank"" option, and

add all the contents of "cordova-plugin-ekyc" folder, pasted previously.

OBDX Servicing Application

2–33

7. After addition of the files, go to "General" tab for "Zigbank" target and under the

"Frameworks, Libraries and Embedded Content" section change the embed type of all the

frameworks to "Embed and Sign". Failing to do so will make the app crash after

installation.

Home

OBDX Servicing Application

2–34

2.16 Widget Functionality

Widgets are IOS native feature. Below widgets are available in the application

(Refer functional doc - User Manual Oracle Banking Digital Experience Quick Snapshot.docx)

1. All Accounts Widgets – Widget, showing top 3 account balance.

2. Account Details Widget - Widget, showing account balance of default account and last 3
transactions of the same account, can be added to the phone home screen. If default account
is not set, then the details of the account fetched first is shown.

3. Multi-Functional Widget – Widget showing default account balance. If default account is not
present, it shows details of account fetched first. Additionally, it has option to scan to pay
feature, transfer money, credit account overview and investment overview.

4. Scan to Pay Widget – Widget which allows to scan to pay.

Prerequisite:

Quick Snapshot feature needs to be enabled in the application from the login screen. (Refer
function doc - User Manual Oracle Banking Digital Experience Quick Snapshot.docx)

If bank doesn’t need this feature, then can do below steps:

Removal of Widget functionality from workspace:

To remove the widget functionality from workspace please carry out the following steps:

1. Please delete “AccountsWidgetExtension” from the “Targets” section.

2. Please delete “AccountsWidgetExtension.entitlements” file and “AccountsWidget” folder from
Project navigator.

OBDX Servicing Application

2–35

3. Delete “AccountsWidget” Folder as shown below

OBDX Servicing Application

2–36

2.17 Scan to Pay from Application Icon

Users can long press on bank’s application icon on home screen and click on scan-to-pay option
to scan QR and make payments.

1. This option is not RTM controlled hence to remove this option if bank doesn’t need it, then
open Zigbank project in Xcode, open ZigBank-Info.plist. Delete entry for key – “Home Screen
Shortcut Items.”

2.18 Scan Card using Augmented Reality

Users can scan card and view account details and transactions of the account associated with
the card.

1. To use this feature, minimum deployment target should be iOS 13 as this feature is
supported IOS 13 and above.

2. Open Zigbank project. Select target, and go top General Tab. Change minimum IOS version
to 13.0

3. Bank needs to add sample card images in the Zigbank project so that OS recognizes it as a
valid bank card. Keep bank’s available card images ready in jpeg/png format.

4. Open Plugins->“cordova-plugin-place-ar” -> “Resources” -> Assets. Drag and drop sample
bank card images inside “AR Resources” folder. Click on the image and open Attributes
pane on right panel. Set width of the image in inches to the real world size of the card.

OBDX Servicing Application

2–37

OBDX Servicing Application

2–38

5. “Scan your card” option is not RTM controlled so to remove this option, remove the entry from
UI – components – docked-menu – pre-login.json. Remove entry for “scan-your-card”. There
is no need to increase the minimum deployment target to 13.0 if you do not need this feature
to be enabled for the users.

2.19 Passkey (Passwordless login)

Passkey is passwordless login is introduced in latest IOS ecosystem (iOS devices, Safari) and
Android devices and on latest browsers.which allows users to login securely without entering
username and password.

IOS passkeys are shared in iCloud keychain. Hence iCloud Keychain should be enabled by the
users on their apple ID on iOS device.

System requirements: Attached is the compatibility chart for passkeys to work:

Browsers should also be latest versions supporting WebAuthn protocols.

NOTE: Only one of two login types can exist in the application, Either passkey or alternate
(PIN/Pattern/FaceId/touchID). So, setup this option only for first time application launch in the
market. If the application is already launched and users have enabled alternate login, then enabling
passkey option will hide the alternate login options from the application.

TO DISBALE THIS OPTION:

By doing this, passkey option will not be available to users withing the application. User will not be
able to register for passkey and also will not be able to login using passkey. Follow below steps:

1. Remove RTM access from Client Servicing -> Authentication - > Passkey Setup for Mobile
Application,Mobile (Responsive) and Internet touch points

OBDX Servicing Application

2–39

2. Set this flag in channel-framework-js-configurations-config.js to false

thirdPartyAPIs -> passkey -> required -> false

TO ENABLE THIS OPTION:

1. Add RTM access from Client Servicing -> Authentication - > Passkey Setup for Mobile
Application,Mobile (Responsive) and Internet touch points

2. Set this flag in channel-framework-js-configurations-config.js to true

thirdPartyAPIs -> passkey -> required -> true

3. Along with above, we need below server side and application side setup

Server-Side Setup:

1. Update the relying party in below property

select prop_value from digx_fw_config_all_b where prop_id='PASSKEY_RP_ID'

2. Note – Relying partId is the domain name of the website to which credentials will be
associated. (Eg google.com, example.com etc)

3. Hosting ASA file (Apple-app-site-association) on server.

a. ASA- Apple App Site Association fille which IOS installs on the device when application is
installed. This ASA file is hosted on our server for testing and then apple stores that file to
its APPLE CDN when application is released on Appstore.

b. This file is fetched by Apple after a duration of 5 days. So, any new update in the file
takes 5 days to gets reflected in the application. In development mode though, every
application installation, the ASA file is re-fetched on device.

OBDX Servicing Application

2–40

c. If Bank doesn’t want to set this up, do not follow below steps to setup ASA file. Also,
open Zigbank project in XCode, Select Zigbank target -> Signing Capabilities -> Delete
Associated domain.

There are two parts for the AASA file setup – Server side and application side.

Server-Side AASA Setup:

1. Create a json file and save it with name “apple-app-site-association” (without any extension
not even “. json” extension is to be added). Copy the content from below. Update “appID”,
“appIDs”, and “apps” value in below JSON to that of bank’s appID and bundleID.

{

 "webcredentials":{

 "apps":[

 "3NXJ972C93.com.ofss.digx.obdx.zigbank"

]

 }

}

2. This file needs to be on https server with valid SSL certificate.

3. Update properties in digx-admin.war --> com.ofss.digx.app.sms.service.jar --
> resources/IphoneApplink.properties

Below are the sample values for a single application supporting deeplink. Need tp update banks’
teamID and bundle ID.

 numberofapps=1

 appid0=3NXJ972C93.com.ofss.digx.obdx.zigbank <Add bank’s

teamID.bundleID>

 paths0=*

4. Need to change host and port in Obdx.conf

ProxyPass "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

ProxyPassReverse "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

5. After the setup is done, this ASA file must be accessible on mobile browser with this url.
There should not by any redirects for accessing this file.

https://<host>/.well-known/apple-app-site-association

http://100.76.153.118:8081/xref/trunk/core/middleware/modules/com.ofss.digx.module.sms/com.ofss.digx.app.sms.service/
http://100.76.153.118:8081/xref/trunk/core/middleware/modules/com.ofss.digx.module.sms/com.ofss.digx.app.sms.service/src/main/resources/
http://100.76.153.118:8081/xref/trunk/core/middleware/modules/com.ofss.digx.module.sms/com.ofss.digx.app.sms.service/src/main/resources/IphoneApplink.properties
http://100.76.153.118:8081/s?path=Q3784B628L.com.ofss.digx.obdx.zigbank&project=trunk
http://100.76.157.55:7003/digx-admin/sms/v1/.well-known
http://100.76.157.55:7003/digx-admin/sms/v1/.well-known

OBDX Servicing Application

2–41

Application side setup:

1. Open developer portal and enable Associated domain for your appID

2. Open Zigbank.workspace- Select Zigbank target. Go to Signing and Capabilities – In
associated domain section, update the URL with bank’s host for webcredentials key.

Example. Replace ofss-mum-
2524.snbomprshared1.gbucdsint02bom.oraclevcn.com?mode=developer with banks host
where the ASA file is hosted. Port and “https” should not be added here.

Pease note – in webcredentials value “?mode=developer”
is only for development mode and testing on testflight. Hence for development with this
mode, we can test only with developer profile.

Once app is ready for distribution to appStore, ?mode=developer should be removed while
archiving for app store release.

How to test on device in development/testing phase.

a. Developer mode should be enabled on IOS device.

b. iCloud keychain should be enabled for appleID configured on the device. Settings –
profile – iCloud – Passwords and Keychains – Sync this iPhone.

c. Go to Settings -> Passwords -> Password Option -> Check Auto fill option is enabled.

2.20 Deeplinking - To open reset password, claim money links with
the application

1. Deeplinking in IOS works with https url and a valid ASA configuration. Deeplinking keeps the
application flow within the application when user clicks on bank’s reset-password or claim-
money link on email or message.

OBDX Servicing Application

2–42

2. ASA- Apple App Site Association file which OS installs on the device when application is
installed. This ASA file is hosted on our server for testing and then apple stores that file to its
APPLE CDN when application is released on Appstore.

3. This file is fetched by Apple after a duration of 5 days. So, any new update in the file takes 5
days to gets reflected in the application. In development mode though, every application
installation, the ASA file is re-fetched on device.

4. This is optional setup. If bank wants deep linking, then below steps to setup AASA file.

5. If Bank doesn’t want to set this up, do not follow below steps to setup AASA file. Also, open
Zigbank project in XCode, Select Zigbank target -> Signing Capabilities -> Delete Associated
domain

AASA SETUP:

There are two parts for the setup – Server side and application side.

Server Side AASA Setup:

1. Create a json file and save it with name “apple-app-site-association” (without any extension
not even .json extension is to be added). Copy the content from below. Update “appID”,
“appIDs”, and “apps” value in below JSON to that of bank’s appID and bundleID.

{

 "applinks":{

 "apps":[

],

 "details":[

 {

 "appID":"3NXJ972C93.com.ofss.digx.obdx.zigbank",

 "appIDs":[

 "3NXJ972C93.com.ofss.digx.obdx.zigbank"

],

 "components":[

 {

 "comment":"Match",

 "/":"*"

 }

],

OBDX Servicing Application

2–43

 "paths":[

 "*"

]

 }

]

 },

 "activitycontinuation":{

 "apps":[

 "3NXJ972C93.com.ofss.digx.obdx.zigbank"

]

 }

}

2. 3NXJ972C93.com.ofss.digx.obdx.zigbank In this 3NXJ972C93 is the team Id and
com.ofss.digx.obdx.zigbank is bundle identifier. So the format is
<TEAM_ID>.<bundleIdentifier>

3. Team ID is present in developer account in membership details

4. This file needs to be hosted on https server with valid SSL certificate. There should be no
rediection to this file.

5. Update properties in digx-admin.war --> com.ofss.digx.app.sms.service.jar --
> resources/IphoneApplink.properties

Below are the sample values for a single application supporting deeplink. Bank should update
banks’ teamID and bundle ID.

 numberofapps=1

 appid0=3NXJ972C93.com.ofss.digx.obdx.zigbank <Add bank’s teamID.bundleID>

 paths0=*

6. Need to change host and port in Obdx.conf

ProxyPass "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

ProxyPassReverse "/.well-known" "http://100.76.157.55:7003/digx-admin/sms/v1/.well-known"

http://100.76.153.118:8081/xref/trunk/core/middleware/modules/com.ofss.digx.module.sms/com.ofss.digx.app.sms.service/
http://100.76.153.118:8081/xref/trunk/core/middleware/modules/com.ofss.digx.module.sms/com.ofss.digx.app.sms.service/src/main/resources/
http://100.76.153.118:8081/xref/trunk/core/middleware/modules/com.ofss.digx.module.sms/com.ofss.digx.app.sms.service/src/main/resources/IphoneApplink.properties
http://100.76.153.118:8081/s?path=Q3784B628L.com.ofss.digx.obdx.zigbank&project=trunk
http://100.76.157.55:7003/digx-admin/sms/v1/.well-known
http://100.76.157.55:7003/digx-admin/sms/v1/.well-known

OBDX Servicing Application

2–44

7. After the setup is done, this ASA file must be accessible on mobile browser with this URL.
There should not by any redirects for accessing this file.

https://<host>/.well-known/apple-app-site-association

Application side setup:

1. Open developer portal and enable Associated domain for your appID

2. Open Zigbank.workspace->Select Zigbank target. Go to Signing and Capabilities – In
associated domain section, update the URL with bank’s host for activitycontinuation and
applinks

Example. Replace ofss-mum-
2524.snbomprshared1.gbucdsint02bom.oraclevcn.com?mode=developer with banks host
where the ASA file is hosted. No port and https to be added here.

Pease note – in applinks and activitycontinuation “?mode=developer”
is only for development mode and testing on TestFlight. Hence for development with this
mode, we can test only with developer profile.

Once app is ready for distribution to Appstore and TestFlight, ?mode=developer should be
removed.

OBDX Servicing Application

2–45

3. Update the key_server_url to https URL in the Zigbank project app.plist

Device Side setup for development and testing:

1. To test on device, Developer mode should be enabled. Additionally, go to Phone Settings –

Developer mode- > Enable “Associated domain Development”.

2. With all above setup, install the application on the device. Please not while installing the
device must be connected to network in which the ASA file is accessible.

3. Under Settings-Developer Option – Go to Diagnostics - > Add your server URL like below
and check if device can identify this link as deeplink. If all setup is correct and ASA file is
successfully installed on device, this will display a valid URL as below:

Example: In screenshot below, we have added our server URL which is also the URL where
ASA file is hosted.
https://ofss-mum-2524.snbomprshared1.gbucdsint02bom.oraclevcn.com/

If we see below message, then deeplink can be tested on this device.

OBDX Servicing Application

2–46

4. Send the link for reset-password/claim money in mail or copy the link and save the link in
phone’s notepad. The link should be a https URL where the ASA is hosted and should not
contain port.

5. Long press on the link and you must see “Open In Zigbank App” option. Clicking the option
page opens in the application.

Archive and Export

3–1

3. Archive and Export

a. In the Menu bar click on Product -> Archive (Select Generic iOS Device)

b. After archiving has successfully completed. Following popup will appear.

c. Click on Distribute App in the right pane of the popup -> select the Method of Distribution ->
Select Distribute. Review the contents and click on Export -> Export and generate the .ipa

There are multiple options for exporting, select according to what is needed.

Debugging – this will create an ipa with development profile for internal testing.

Release Testing – This will create an ipa with Ad Hoc distribution profile for adHoc testing.

TestFlight Internal Only , TestFlight & AppStore- As the name suggests, this is for testflight and
AppStore release.

Archive and Export

3–2

This is window which appear after selecting Debugging option. Note the Certificate and provisioning
profile is for development.

Click on Export and it will ask to save the ipa. Select the location and click on Export. This ipa will
be development ipa which can be installed on devices which are added in the profiles on developer
account. Refer Section for more details ()

Archive and Export

3–3

Below is the window which appears after selecting “Release Testing”. Note here the Certifiate and
Profile is of Adhoc Distribution.

Follow the above steps to Export and save the ipa. This ipa will be adhoc distribution ipa.

NOTE: The frameworks built are compatible with devices and simulators both. So, the application
can be run on the simulator directly without copying any frameworks.

Home

OBDX Authenticator Application (Futura Secure)

4–1

4. OBDX Authenticator Application (Futura Secure)

1. This is an Authenticator Application which is used when bank has enabled Soft Token
Authentication as Authentication mechanism for any transaction. This application basically
supports one of below authentication:

• HOTP: Random based Soft Token

• TOTP: Time based Soft Token

2. Users should have this application installed and logged in and PIN is set before initiating any
transaction which needs this token.

3. Based on the configuration set, user can any time log in with PIN and check the token and use
that token for completing any transaction based on “Soft Token Authentication”

Prerequisite:

• Download and Install node js as it is required to run npm and cordova commands.

• Latest XCode to be download from Mac App Store. This document is w.r.t to XCode 15.0

• Authenticator Application is supported only on current iOS version and only one version
preceding that.

4.1 Authenticator UI (Follow any one step below)

4.1.1 Using built UI

For TOKEN-BASED - Unzip dist.tar.gz directory from OBDX_Patch_Mobile\authenticator\TOKEN-
BASED

4.1.2 Building UI manually

1. Extract authenticator_ui.tar.gz from OBDX_Patch_Mobile\authenticator\unbuilt_ui.

The folder structure is as shown:

OBDX Authenticator Application (Futura Secure)

4–2

a. Token Based Authentication Mechanism

a. Copy the “token-based/login” folder and replace it at the “components/modules/”
[in ui folder] location. This will replace the existing the login folder.

b. Open the terminal at “_build” level.

c. Run the following commands:

d. After running above commands and getting result as “Done, without errors.” A
new folder will be created at “_build” folder level with name as “dist”.

4.2 Authenticator Application Workspace Setup

1. Unzip and navigate to iOS workspace as shipped in installer.

2. Open the workspace as shown below and find and replace the following generated UI files
from “ui/dist” folder :

➢ components

➢ css

➢ framework

➢ images

➢ pages

sudo npm install -g grunt-cli

sudo npm install

node render-requirejs/render-requirejs.js

grunt authenticator --verbose

OBDX Authenticator Application (Futura Secure)

4–3

➢ resources

3. Double click on OBDXSecureAuthenticator.xccodeproj to open the project in Xcode

4. Update HOTP or TOTP in above screenshots and update the server URL.

5. Set value of max_no_attempts to value greater than 0.

6. Create certificates and profiles on Apple Developer account, Use the bundle identifier and
set appropriate profile in the application.

OBDX Authenticator Application (Futura Secure)

4–4

1. Adding bundle identifiers:

7. Bundle identifiers needs to be added in the Info.plist of each the frameworks

8. For example, let us assume that the bundle identifier used is abc.def.ghi.jkl. The steps to
be followed are,

a. Right click on ObdxAuthenticator.xcframework(in Xcode’s Project Navigator) ->
Show in Finder

b. When the Finder directory click on ios-arm64 folder->
ObdxAuthenticator.framework.

c. Open Info.plist and set Bundle identifier as abc.def.ghi.jkl.ObdxAuthenticator

d. Follow same for Cordova.xcframework and set Bundle identifier for
Cordova.framework : abc.def.ghi.jkl.Cordova

9. Also, set the identifiers and select appropriate profile in the target -> Signing & Capbilities
tab as show below:

10. The application contains frameworks for devices and simulator both. Run the application
directly on simulator without copying any frameworks.

11. The application can be archived using steps in Section 4.3 for running on device.

4.3 Archiving Authenticator Application

1. Set the device selection to Generic iOS device. Then go to Product -> Archive.

OBDX Authenticator Application (Futura Secure)

4–5

2. Choose your Archive and then click “Export”.ipa file will be generated with Name “Futura
Secure”

OBDX Authenticator Application (Futura Secure)

4–6

OBDX Authenticator Application (Futura Secure)

4–7

4.4 Using SSL in Authenticator App:

Follow below steps to setup SSL in Authenticator application:

Open Authenticator application project - > app.plist. Add below changes.

1. shared_server_url_url = <bank’s https url>

2. PinnedUrl – Item 0 – replace @@PINNEDURL1 with your https url (without port)

3. Open bank’s https site on browser, click on the lock icon and “Show certificate”, Select the
certificate icon and Drag and drop the certificate from Safari to local machine. Rename to
certificate.cer.

4. Open Authenticator application, right lick on Resources folder -> Add Files to Authenticator” -
> Select the downloaded certificate -> Select “Copy Items if Needed” -> And target selected

as below:

5. PinnedCertificateName – Item 0 – replace @@trustedCertificate1 with certificate name.
Example your certificate name added to your Project is certificate.cer, then
@@trustedCertificate1 should be replaced with “certificate”

6. Server_type - OBDXTOKEN

7. DOMAIN_BASED_CATEGORIZATION – YES

Home

